Course Date | Location | Course fee: | Registrations | (Group) | ||
---|---|---|---|---|---|---|
Start Date: 07/06/2021 End Date: 11/06/2021 | Nairobi | $ 1,000 | Register as Individual | Register for Online Training | Register as a Group | |
Start Date: 03/05/2021 End Date: 07/05/2021 | Nairobi | $ 1,000 | Register as Individual | Register for Online Training | Register as a Group | |
Start Date: 05/04/2021 End Date: 09/04/2021 | Nairobi | $ 1,000 | Register as Individual | Register for Online Training | Register as a Group | |
Start Date: 01/03/2021 End Date: 05/03/2021 | Nairobi | $ 1,000 | Register as Individual | Register for Online Training | Register as a Group | |
Start Date: 01/02/2021 End Date: 05/02/2021 | Nairobi | $ 1,000 | Register as Individual | Register for Online Training | Register as a Group |
COURSE OBJECTIVE By the end of this course the participant should be able to: · Performing operations with data: define variables, recode variables, create dummy variables, select and weight cases, split files. · Building charts in SPSS: column charts, line charts, scatterplot charts, boxplot diagrams. · Performing the basic data analysis procedures: Frequencies, Descriptive, Explore, Means, Crosstabs. · Testing the hypothesis of normality · Detecting the outliers in a data series · Transform variables · Performing the main one-sample analyses: one-sample t-test, binomial test, chi square for goodness of fit · Performing the tests of association: Pearson and Spearman correlation, partial correlation, chi square test for association, loglinear analysis DURATION 5 Days WHO SHOULD ATTEND The course targets project staff, researchers, managers, decision makers, and development practitioners who are responsible for projects and programs in an organization
COURSE CONTENT · Introduction · Defining variables · Variable recoding · Dummy variables · Selecting cases · File splitting · Data weighting · Creating Charts in SPSS · Column Charts · Line Charts · Scatterplot Charts · Boxplot Diagrams · Simple Analysis Techniques · Frequencies Procedures · Descriptive Procedure · Explore Procedure · Means Procedure · Crosstabs Procedure · Assumption Checking. Data Transformations · Checking for Normality – Numerical methods · Checking for Normality – Graphical methods · Detecting Outliers – Graphical methods · Detecting Outliers – Numerical methods · Detecting Outliers – How to handle the Outliers · Data transformations · One –sample test · One-sample T-test – Introduction · One-sample T-test – Running the procedure · Introduction to Binomial test · Binomial test with weighted data · Chi square for goodness-of-fit · Chi square for goodness-of-fit with weighted data · Pearson Correlation –Introduction · Pearson Correlation- assumption checking · Pearson Correlation-running the procedure · Spearman Correlation – Introduction · Spearman Correlation – Running the procedure · Partial Correlation – introduction · Chi Square for association · Chi Square for association with weighted data · Loglinear Analysis –Introduction · Loglinear Analysis – Hierarchical Loglinear Analysis · Loglinear Analysis – General Loglinear Analysis · Test for Mean Difference · Independent –sample T-test –Introduction · Independent –sample T-test – Assumption testing · Independent –sample T-test – resulting interpretation · Paired-Sample T-test – Introduction · Paired-Sample T-test – assumption testing · Paired-Sample T-test – results interpretation · One Way ANOVA – Introduction · One Way ANOVA – Assumption testing · One Way ANOVA – F test Results · One Way ANOVA – Multiple Comparisons’ · Two Way ANOVA – Introduction · Two Way ANOVA – Assumption testing · Two Way ANOVA – Interaction effect · Two Way ANOVA – Simple main effects · Three Way ANOVA – Introduction · Three Way ANOVA – Assumption testing · Three Way ANOVA – third order interaction · Three Way ANOVA – simple second order interaction · Three Way ANOVA – simple main effects · Three Way ANOVA – simple comparisons · Multivariate ANOVA – Introduction · Multivariate ANOVA – Assumption checking · Multivariate ANOVA – Results Interpretation · Analysis of Covariance (ANCOVA) – Introduction · Analysis of Covariance (ANCOVA) – Assumption Checking · Analysis of Covariance (ANCOVA) – Results Interpretation · ANOVA – Introduction · ANOVA – Assumption Checking · ANOVA – Results Interpretation · ANOVA – Simple Main Effects · Mixed ANOVA – Introduction · Mixed ANOVA – Assumption checking · Mixed ANOVA – Interaction · Mixed ANOVA – Simple Main Effects · Predictive Techniques · Simple Regression – Introduction · Simple Regression – Assumption checking · Simple Regression – Results interpretation · Multiple Regression – Introduction · Multiple Regression – Assumption Checking · Multiple Regression – Results interpretation · Regression with Dummy variables · Sequential Regression · Binomial Regression · Binomial Regression – Introduction · Binomial Regression – Assumption checking · Binomial Regression – Goodness-of-Fit Indicators · Binomial Regression – Coefficient Interpretation · Binomial Regression – Classification Table · Multinomial Regression – Introduction · Multinomial Regression – Assumption Checking · Multinomial Regression – Goodness-of-Fit Indicators · Multinomial Regression – Coefficient Interpretation · Multinomial Regression – Classification Table · Ordinal Regression – Introduction · Ordinal Regression – Assumption Testing · Ordinal Regression – Goodness-of-Fit Indicators · Ordinal Regression – Coefficient Interpretation · Ordinal Regression – Classification Table · Scaling Techniques · Reliability Analysis · Multidimensional Scaling – Introduction · Multidimensional Scaling – PROXSCAL · Data Reduction · Principal Component Analysis – Introduction · Principal Component Analysis – Running the Procedure · Principal Component Analysis – Testing for Adequacy · Principal Component Analysis – Obtaining a Final Solution · Principal Component Analysis – Interpreting the Final Solutions · Principal Component Analysis – Final Considerations · Correspondence Analysis – Introduction · Correspondence Analysis – Running the Procedure · Correspondence Analysis – Results Interpretation · Correspondence Analysis – Imposing Category Constraints · Grouping Methods · Cluster Analysis – Introduction · Cluster Analysis – Hierarchical Cluster · Discriminant Analysis – Introduction · Discriminant Analysis – Simple DA · Discriminant Analysis – Multiple DA · Multiple Response Analysis GENERAL NOTES · This course is delivered by our seasoned trainers who have vast experience as expert professionals in the respective fields of practice. The course is taught through a mix of practical activities, theory, group works and case studies.
|
Group # | |||
---|---|---|---|
1. | 1 | 1000.00 | 2000.00 |
2. | 2 - 10 | 800.00 | 1,600.00 |
3. | 11 - 20 | 750.00 | 1,500.00 |
4. | 21 - 30 | 700.00 | 1,400.00 |
5. | 32 - 40 | 650.00 | 1,300.00 |
6. | 41 - 50 | 600.00 | 1,200.00 |
7. | 51 > Above | 500.00 | 1000.00 |